Δύο σύγχρονες κυματικές πηγές και βρίσκονται στα σημεία Α και Β αντίστοιχα, της επιφάνειας ενός υγρού. Τη χρονική στιγμή οι πηγές ξεκινούν να ταλαντώνονται κάθετα στην επιφάνεια του υγρού, με την απομάκρυνση τους να περιγράφεται από την εξίσωση . Σημείο (Σ) της επιφάνειας απέχει κατά από την πηγή και κατά από την πηγή . Το (Σ) ξεκινά να ταλαντώνεται τη χρονική στιγμή ενώ από τη χρονική στιγμή και έπειτα σταματά να κινείται.
α) Να υπολογίσετε την ταχύτητα των κυμάτων και την απόσταση .
β) Να γράψετε την εξίσωση της απομάκρυνσης του (Σ) σε συνάρτηση με το χρόνο και της ταχύτητας ταλάντωσης του σε συνάρτηση με το χρόνο.
γ) Να κάνετε τη γραφική παράσταση της αλγεβρικής τιμής της επιτάχυνσης του (Σ) ως συνάρτηση του χρόνου σε κατάλληλα βαθμολογημένο σύστημα αξόνων.
δ) Να υπολογίσετε την ελάχιστη συχνότητα των κυμάτων που μπορούμε να προκαλέσουμε ώστε στο σημείο (Σ) να υπάρχει ενίσχυση των κυμάτων.
(Θεωρήστε ότι )
Λύση
α) Να υπολογίσετε την ταχύτητα των κυμάτων και την απόσταση .
β) Να γράψετε την εξίσωση της απομάκρυνσης του (Σ) σε συνάρτηση με το χρόνο και της ταχύτητας ταλάντωσης του σε συνάρτηση με το χρόνο.
γ) Να κάνετε τη γραφική παράσταση της αλγεβρικής τιμής της επιτάχυνσης του (Σ) ως συνάρτηση του χρόνου σε κατάλληλα βαθμολογημένο σύστημα αξόνων.
δ) Να υπολογίσετε την ελάχιστη συχνότητα των κυμάτων που μπορούμε να προκαλέσουμε ώστε στο σημείο (Σ) να υπάρχει ενίσχυση των κυμάτων.
(Θεωρήστε ότι )
Λύση
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου